网站首页 > 政治论文> 文章内容

该选数据分析还是数据挖掘?

※发布时间:2017-8-16 16:41:25   ※发布作者:habao   ※出自何处: 

  区别:数据分析偏统计,可视化,出报表和报告,需要较强的表达能力。数据挖掘偏算法,重模型,需要很深的代码功底,要码代码,很多。

  数据分析:excel是必须,R是基本,python是进阶。SAS和Matlab给土豪去玩吧。

  数据挖掘:高数/数学分析,数值分析,线性代数,凸优化,运筹学(这些是基本)数字信号处理,模式识别,矩阵论(进阶)

  一般来说,只有应届生去找工作会比较看重学历,因为你没有其他可以展示你能力的。但是随着工作时间久了(两年+),你的能力远超于你所在的学校,学历就不重要了。如果要读,读计算数学/概率论/模式识别/计算机 方面的研究生,争取文(高质量),否则应聘的时候并没有什么影响,当然,有些公司可能会在初筛的时候根据学历筛选人,正常,真想进就多工作几年再社招进去呗,学历不好也不能怪别人对不对。

  大公司核心职位优先中型公司核心职位大公司边缘职位优秀的创业小公司核心职位中型公司边缘职位的创业小公司边缘职位

  1.大公司数据量多,人才多。能接触到核心项目核心职位是最佳选择。(BAT,网易有道,微软等)

  3.创业公司慎选,如果有创业公司的offer,一看他们差不差钱,而看他们项目赢不赢利,三看团队技术氛围浓不浓。不差钱+盈利但技术氛围不浓,可以去,但不适合对技术追求高的人;不差钱+技术氛围浓但暂时不盈利,可以考虑,但要搞清楚盈利模式。盈利+技术氛围浓但现在差钱,可以考虑,争取成为核心,一旦融资不得了。如果差钱又不盈利技术氛围还差,算了吧,耗不起。

  实在不知道怎么选,就看两点:1.数据量大小 2.技术氛围。钱少可以以后赚,技术氛围浓最重要。

  应届生要啥项目经验,本科生就说说自己的毕业论文,数模/ACM/阿里的参赛经历或获经历,以及可能会有的实习经历。研究生就说实验室的项目,负责的工作,完成的和发表的论文。不要夸大,如实说。

  代码能力强直接搞算法,弱就先做数据分析,慢慢来,不着急。想我毕业的时候只会Matlab,后来被领导逼着两星期学了R,一个月学了python,自己在业余学了java,hadoop和spark等,也是一步步来的,不要想一口吃成个大胖子。

  我从实习到现在年薪翻了5倍,你说怎样。你要是只冲着钱去呢,去做销售吧;要是喜欢纯数呢,去做研究吧;要是喜欢从数据里发现一些有趣的事情并应用上去,那就来做数据分析/数据挖掘吧。

  一个简单的方法:所有数据分析类的岗位要求里写的要求会excel,PPT等的干的都是统计员的活!所有数据分析类的岗位要求里写的要求会GA,pu,uv分析的都是运营部门的!所有数据挖掘岗位里写的要求只有hadoop,spark,ETL的干的都是数据仓库的活!其他的自己看吧,数据挖掘有好几种职位:广告ctr预估的,机器学习的,推荐系统,自然语言处理等等。自己选择吧。反正入门都可以尝试做做。

  总之,入门容易深入难,数学不好可以学,但会制约你的发展,代码不好也可以,但也会制约你的职业生涯,所以那些说“我觉得我数学不好代码能力也不强觉得R好难英语也不好看不懂国外的网站学多了会不会掉头发会不会找不到男/女朋友blahblah”的,你开心就好,你的职业生涯掌握在自己手中。返回搜狐,查看更多

  推荐: